

Chapter 17 Magnetic field

Prepared & Presented by: Mr. Mohamad Seif

Part I: Superposition of magnetic fields:

Three magnets are arranged as shown in figure 1. The intensities of the magnetic fields created by the three magnets at point A are $B_1 = 0.5T$, $B_2 = 0.1T$, and $B_3 = 0.3T$ respectively.

- 1) Represent at A, the magnetic field vector created by these magnets.
- 2) Determine the magnitude of the resultant magnetic field \overrightarrow{B}_r at point A due to these three magnets. Represent it on the figure.

$$B_1 = 0.5T, B_2 = 0.1T, \text{ and } B_3 = 0.3T$$

1) Represent at A, the magnetic field vector created by these magnets.

$$B_1 = 0.5T, B_2 = 0.1T, \text{ and } B_3 = 0.3T$$

2) Determine the magnitude of the resultant magnetic field \overline{B}_r at point A due to these three magnets. Represent it on the figure.

$$\vec{B}_{1,2} = \vec{B}_1 + \vec{B}_2$$
 $B_{1,2} = B_1 - B_2 = 0.5 - 0.1$
 $B_{1,2} = 0.4T$
 $\vec{B}_{1,2} = 0.4T$
 $\vec{B}_{1,2} = 0.4T$

Figure 1

 $\vec{B}_{1,2} = 0.4T$
 $\vec{B}_{1,2} = 0.4T$

$$B_1 = 0.5T, B_2 = 0.1T, \text{ and } B_3 = 0.3T$$

$$\overrightarrow{B}_r = \overrightarrow{B}_{1,2} + \overrightarrow{B}_3$$

$$B_r = \sqrt{(\mathbf{0}.\mathbf{4})^2 + (\mathbf{0}.\mathbf{3})^2}$$

Part II: Geomagnetism: A magnetic needle, free to rotate in the horizontal plane about a vertical axis, is placed at point M in a region where the intensity of the horizontal component of the terrestrial magnetic field is $B_H = 2 \times 10^{-5} T$. The needle deviates by an angle $\alpha = 60^{\circ}$ when it is submitted to an external magnetic field of intensity B that is perpendicular to the magnetic meridian as shown in figure .

Figure 2

- 1) Calculate the values of B and B_r .
- 2) The intensity of the vertical component of the terrestrial magnetic field at this region is $B_V = 4 \times 10^{-5} T$.
 - a) Calculate the intensity of the terrestrial magnetic field.
 - b) Calculate the magnetic inclination.

$$B_H = 2 \times 10^{-5} T, \alpha = 60^{\circ}$$

1) Calculate the values of B and B_r .

$$tan\alpha = \frac{B}{B_h} \implies B = B_h \times \tan \alpha$$

$$B = 2 \times 10^{-5} \times tan(60)$$

Figure 2

$$B_H = 2 \times 10^{-5} T, \alpha = 60^{\circ}$$

1) Calculate the values of B and B_r .

$$sin\alpha = \frac{B}{B_r}$$
 $\Rightarrow B_r = \frac{B}{sin\alpha} = \frac{3.46 \times 10^{-5}}{sin60}$

$$B_r = 3.4 \times 10^{-5} T$$

Figure 2

$$B_H = 2 \times 10^{-5} T, \alpha = 60^{\circ}$$

- 2) The intensity of the vertical component of the terrestrial magnetic field at this region is $B_V = 4 \times 10^{-5} T$. a) Calculate the intensity of the terrestrial magnetic field.
- $B_T = \sqrt{B_V^2 + B_H^2} \implies B_T = \sqrt{(4 \times 10^{-5})^2 + (2 \times 10^{-5})^2}.$

$$\Rightarrow B_T = 4.5 \times 10^{-5} T \quad Be Smart$$

b) Calculate the magnetic inclination.

ta n(I) =
$$\frac{B_V}{B_H} = \frac{4 \times 10^{-5} T}{2 \times 10^{-5} T}$$
 \longrightarrow $I = 63.4^{\circ}$

Be Smart Academyt

